In organic chemistry, phosphonates or phosphonic acids are organophosphorus compounds containing Functional group, where R is an organic group (alkyl, aryl). If R is hydrogen then the compound is a dialkyl phosphite, which is a different functional group. Phosphonic acids, typically handled as salts, are generally nonvolatile solids that are poorly soluble in , but soluble in water and common alcohols.
Many commercially important compounds are phosphonates, including glyphosate (the active molecule of the herbicide Roundup), and ethephon, a widely used plant growth regulator. Bisphosphonates are popular drugs for treatment of osteoporosis.Svara, J.; Weferling, N.; Hofmann, T. "Phosphorus Compounds, Organic," in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2008. .
In biochemistry and medicinal chemistry, phosphonate groups are used as stable for phosphate, such as in the antiviral nucleotide analog, Tenofovir, one of the cornerstones of anti-HIV therapy. And there is an indication that phosphonate derivatives are "promising ligands for nuclear medicine."
Phosphonate salts are the result of deprotonation of phosphonic acids, which are diprotic acids:
Phosphonate esters are the result of condensation of phosphonic acids with alcohols.
Phosphonic acid can be alkylated via the Kabachnik–Fields reaction or Pudovik reaction to give aminophosphonate, which are useful as chelating agents. One example is the industrial preparation of ATMP:
Phosphonic acid also can be alkylated with acrylic acid derivatives to afford carboxyl functionalized phosphonic acids. This reaction is a variant of the Michael addition:
In the Hirao coupling dialkyl (which can also be viewed as di-esters of phosphonic acid: (O=PH(OR)2) undergo a palladium-catalyzed coupling reaction with an aryl halide to form a phosphonate.
In the Michaelis–Becker reaction, a hydrogen phosphonate diester is first deprotonated and the resulting anion is alkylated.
In the Kinnear–Perren reaction alkylphosphonyl dichlorides and esters are generated by alkylation of phosphorus trichloride in the presence of aluminium trichloride. Alkyltrichlorophosphonium salts are intermediates:
The naturally occurring phosphonate 2-aminoethylphosphonic acid was first identified in 1959 in plants and many animals, where it is localized in membranes. Phosphonates are quite common among different organisms, from to eubacteria and , , and others. They were first reported in natural soils by Newman and Tate (1980). The biological role of the natural phosphonates is still poorly understood. Bis- or polyphosphonates have not been found to occur naturally.
A number of natural product phosphonate substances with antibiotic properties have been identified. Phosphonate natural product antibiotics include fosfomycin which is approved by FDA for the treatment of non-complicated urinary tract infection as well as several pre-clinically investigated substances such as Fosmidomycin (inhibitor isoprenyl synthase), SF-2312 (inhibitor of the glycolytic enzyme enolase, and substances of unknown mode of actions such as alahopcin. Although phosphonates are profoundly cell impermeable, natural product phosphonate antibiotics are effective against a number of organisms, because many bacterial species express glycerol-3-phosphate and glucose-6-phosphate importers, which can be hijacked by phosphonate antibiotics. Fosfomycin resistant bacterial strains frequently have mutations that inactivate these transporters; however, such mutations are not maintained in the absence of antibiotic because of the fitness cost they impose.
Phosphonates are effective chelating agents. That is, they bind tightly to di- and trivalent metal ions, which is useful in water softening. In this way, they prevent formation of insoluble precipitates (scale). The binding of these ligands also suppresses the catalytic properties of metal ions. They are stable under harsh conditions. For these reasons, an important industrial use of phosphonates is in cooling waters, desalination systems, and in oil fields to inhibit scale formation. Phosphonates are also regularly used in reverse osmosis systems as antiscalants. Phosphonates in cooling water systems also serve to control corrosion of iron and steel. In pulp and paper manufacturing and in textile industry they serve as "peroxide bleach stabilizers", by chelating metals that could inactivate the peroxide. In detergents they are used as a combination of chelating agent, scale inhibitor, and bleach stabilizer. Phosphonates are also increasingly used in medicine to treat disorders associated with bone formation and calcium metabolism. Furthermore, they serve as carriers for radionuclides in bone cancer treatments (see samarium-153-ethylene diamine tetramethylene phosphonate).
Phosphonate nucleotide analogues such as tenofovir, cidofovir and adefovir are critical antiviral medications, which in various pro-drug forms are used for the treatment of HIV, hepatitis B and others.
"No biodegradation of phosphonates during water treatment is observed but photodegradation of the Fe(III)-complexes is rapid. Aminopolyphosphonates are also rapidly oxidized in the presence of Mn(II) and oxygen and stable breakdown products are formed that have been detected in wastewater. The lack of information about phosphonates in the environment is linked to analytical problems of their determination at trace concentrations in natural waters. Phosphonates are present mainly as Ca and Mg-complexes in natural waters and therefore do not affect metal speciation or transport." Phosphonates interact strongly with some surfaces, which results in a significant removal in technical and natural systems.
The RPCl product can then be decomposed with water to produce an alkylphosphonic dichloride RP(=O)Cl2.
Reactions
Hydrolysis
Horner–Wadsworth–Emmons reaction
Structural sub-classes
Bisphosphonates
Thiophosphonates
Phosphonamidates
Occurrence in nature
Uses
Metal chelants
Concrete admixtures
Warheads in proteomics
Medicine
Niche uses
Toxicology
Biodegradation
Phosphonate compounds
See also
Further reading
|
|